博客
关于我
【贪心】Ybt_奶牛晒衣服
阅读量:363 次
发布时间:2019-03-04

本文共 1493 字,大约阅读时间需要 4 分钟。

衣服风干问题

问题描述

有n件衣服,每件衣服的初始湿度为h[i]。每秒钟,衣服会自然风干a个湿度,你也可以选择一件衣服吹干使它这个回合降低b个湿度。当衣服湿度等于0时这件衣服就干了。问最少需要多长时间。

解题思路

要解决这个问题,我们可以使用贪心算法。贪心算法的基本思想是每一步做出局部最优的选择,从而达到全局最优。具体来说,我们每次选择当前湿度最大的那件衣服进行吹干操作,这样可以尽快减少最大的湿度值,从而缩短总时间。

接下来,我们需要考虑如何判断所有衣服在给定时间内是否已经干燥。我们可以通过以下步骤来实现:

  • 将所有衣服的湿度值放入一个大根堆中。大根堆可以帮助我们快速找到当前湿度最大的那件衣服。
  • 初始化时间变量t为0,总时间变量ans也为0。
  • 进入循环,每次循环执行以下操作:
    • 检查堆顶的最大湿度值是否大于t+a。如果是,说明在t秒后,这件衣服自然风干后的湿度为t+a,而实际湿度更高,所以需要进行吹干操作。
    • 每次吹干操作会增加1秒的时间,并将这件衣服的湿度减少b个单位。
    • 将吹干后的湿度值重新放入堆中。
  • 当堆顶的最大湿度值不再大于t+a时,说明所有衣服已经干燥,可以停止循环。
  • 输出总时间ans。
  • 这个算法的时间复杂度主要取决于堆操作的时间复杂度。每次从堆中取出一个元素并重新插入一个元素的时间复杂度都是O(log n),而循环的次数最多是n次,所以总的时间复杂度是O(n log n)。

    代码实现

    #include 
    #include
    #include
    using namespace std;int main() { int n, a, b, t, ans = 0; vector
    h; queue
    q; // 读取输入 scanf("%d%d%d", &n, &a, &b); for (int i = 0; i < n; ++i) { int s; scanf("%d", &s); q.push(s); } // 进行处理 while (!q.empty()) { int current = q.front(); q.pop(); // 计算在t秒后自然风干后的湿度 int naturalDry = t + a; // 判断是否需要吹干 if (current > naturalDry) { // 需要吹干这件衣服 ans++; int newMoisture = current - b; q.push(newMoisture); t++; } else { // 不需要吹干,直接等待t秒 t++; } } // 输出结果 cout << ans << endl; return 0;}

    总结

    通过上述方法,我们可以高效地解决这个问题。每次都选择当前湿度最大的那件衣服进行吹干操作,这样可以确保在最短的时间内完成所有衣服的干燥。代码实现了这一思路,使用了大根堆来快速定位和处理最大的湿度值,确保了算法的高效性。

    转载地址:http://sgkg.baihongyu.com/

    你可能感兴趣的文章
    Numpy.ndarray对象不可调用
    查看>>
    Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
    查看>>
    Numpy:按多个条件过滤行?
    查看>>
    Numpy:条件总和
    查看>>
    numpy、cv2等操作图片基本操作
    查看>>
    numpy中的argsort的用法
    查看>>
    NumPy中的精度:比较数字时的问题
    查看>>
    numpy判断对应位置是否相等,all、any的使用
    查看>>
    Numpy多项式.Polynomial.fit()给出的系数与多项式.Polyfit()不同
    查看>>
    Numpy如何使用np.umprod重写range函数中i的python
    查看>>
    numpy学习笔记3-array切片
    查看>>
    numpy数组替换其中的值(如1替换为255)
    查看>>
    numpy数组索引-ChatGPT4o作答
    查看>>
    numpy最大值和最大值索引
    查看>>
    NUMPY矢量化np.prod不能构造具有超过32个操作数的ufunc
    查看>>
    Numpy矩阵与通用函数
    查看>>
    numpy绘制热力图
    查看>>
    numpy转PIL 报错TypeError: Cannot handle this data type
    查看>>
    Numpy闯关100题,我闯了95关,你呢?
    查看>>
    nump模块
    查看>>